
Unit #2: BNC Frequency Comparisons
Stefan Evert

8 October 2019

In this exercise, you will carry out various frequency comparisons for lexical and grammatical features between
subcorpora of the British National Corpus. In doing so, you will also learn how to load, manipulate and
export statistical tables, which are known as data.frames in R lingo.

First, let us load some corpus frequency counts obtained with BNCweb (http://corpora.lancs.ac.uk/BNCweb/),
which are stored as a text table in the file datasets/bnc_queries.tbl, using TAB characters as column
delimiters (this format is particularly easy to process with R and many other tools). The file contains
separate frequency counts for each text document in the British National Corpus, which allows us to compute
frequencies for arbitrary subcorpora.

R has a built-in function read.table for loading statistical tables from text files; we use the variant
read.delim with presets for TAB-delimited tables. Note the additional options, which you should always
use (unless you have a good reason to do otherwise).
BNCqueries <- read.delim("bnc_queries.tbl", quote="", stringsAsFactors=FALSE)

If you are lazy, you can also use a pre-loaded version of this data frame available in the R package corpora.
library(corpora)
dim(BNCqueries)

[1] 4048 12

The corpora package also contains a help page with further information about the data set, including a
description of the variables (columns) in the table. You will also find queries in CEQL syntax that allow you
to reproduce the frequency counts on a BNCweb server.
?BNCqueries

In order to compile interesting subcorpora, we also need metadata information for the individual text
documents. A comprehensive metadata table is also provided in the form of a TAB-delimited text file (or
pre-loaded in corpora as BNCmeta). Note that when dealing with language data, you should always specify
the character encoding of the text file; otherwise accented letters and other special characters will not load
correctly.
BNCmeta <- read.delim("bnc_metadata_utf8.tbl", quote="",

stringsAsFactors=FALSE, fileEncoding="utf8")

Read the help page ?BNCmeta in order to find out which metadata are available for the different texts. In order
to list the categories distinguished by a given metadat variable, it is easiest to tabulate the corresponding
column of BNCmeta:
table(BNCmeta$derived_type) # What do those numbers mean?

##
academic fiction misc_published newspaper
497 452 710 486
prose spoken_conversation spoken_other unpublished
744 153 755 251

We can also cross-tabulate different metadata variables to see how many texts there are for each combination.
In order to avoid repeating BNCmeta, we can use the with function to address the columns of the table directly
as variables:

1

http://corpora.lancs.ac.uk/BNCweb/

with(BNCmeta, table(derived_type, author_sex))

author_sex
derived_type --- female male mixed unknown
academic 0 41 240 5 211
fiction 0 212 218 1 21
misc_published 0 41 126 53 490
newspaper 0 0 0 95 391
prose 0 100 314 48 282
spoken_conversation 153 0 0 0 0
spoken_other 755 0 0 0 0
unpublished 0 20 22 32 177

Such tabulations show the number of texts in each category or combination of categories. Sometimes we
would rather like to know how many word tokens or sentences there are. For this purpose, we need to add up
the per-text token counts (n_w) or sentence counts (n_s), which can be done with the xtabs function (a more
flexible variant of table). Note that xtabs uses the “formula interface” for specifying the cross-classifying
factors and the dependent variable (i.e. the per-text frequencies).
xtabs(n_w ~ derived_type + author_sex, data=BNCmeta)

author_sex
derived_type --- female male mixed unknown
academic 0 1263207 8366916 185239 5962666
fiction 0 8392300 7294780 1093 455740
misc_published 0 1270119 3454378 2120536 11079076
newspaper 0 0 0 1279223 8132951
prose 0 3326936 11041452 1733995 8076291
spoken_conversation 4233962 0 0 0 0
spoken_other 6175896 0 0 0 0
unpublished 0 335692 504505 1218843 2407633

In order to compile a subcorpus of the BNC, we can apply the subset function to filter the rows of the
metadata table according to certain criteria. While you can think of this as applying a condition to each row
of the data frame, R actually uses vector operations for efficiency. So keep in mind that all logical operations
have to be vectorised (i.e. use & rather than &&, and | rather than ||).
FictM <- subset(BNCmeta, derived_type == "fiction" & author_sex == "male")
FictF <- subset(BNCmeta, derived_type == "fiction" & author_sex == "female")

Note that you can also use data frames to print multiple items of information in a tidy and compact way:
data.frame(male=nrow(FictM), female=nrow(FictF), row.names="# texts")

male female
texts 218 212

In order to obtain frequency counts for each subcorpus, we need to merge the frequency data from BNCqueries
with the metadata information from BNCmeta (corresponding to a JOIN operation in a relational database).
Such table joins can be computed with the merge function. Since we should not rely on the ordering of rows
in the two tables, we specify that corresponding rows should be matched by the id variable (i.e. the BNC text
ID). You can also specify multiple variables in case their is no unique ID that identifies rows unambiguously.
All other variables from the two data frames will be combined into a single table.
BNC <- merge(BNCqueries, BNCmeta, by="id")

Read ?merge to learn more about the different options of the function, which allow you to carry out many
different subtypes of JOIN operations.

2

Now we can recompute the two subcorpora based on the combined table (you could also merge the data
frames FictM and FictF with the relevant rows of BNCqueries, but it is more convenient to perform the
JOIN just once).
FictM <- subset(BNC, derived_type == "fiction" & author_sex == "male")
FictF <- subset(BNC, derived_type == "fiction" & author_sex == "female")

If you prefer to view the subcorpora with an external spreadsheet program, you can save them in CSV
(= comma-separated values) format, which is a standard text-based exchange format supported by most
spreadsheets. Note that software with a German or French localization might use a different form of CSV
with semicolons as separators (because commas are used as decimal points in these languages). Experiment
with different CSV formats and character encodings to find a setting that’s compatible with your favourite
spreadsheet editor.
write.csv(FictM, file="fiction_male.csv", fileEncoding="utf8")
write.csv2(FictF, file="fiction_female.csv", fileEncoding="cp1252")

The last step is to compute the pooled frequency counts for each subcorpus, by adding up the relevant
columns of the data frame. Let us look at the token frequency of downtoners such as almost or scarcely here:
k1 <- sum(FictM$downtoner)
n1 <- sum(FictM$n_w)
k2 <- sum(FictF$downtoner)
n2 <- sum(FictF$n_w)

Let us collect these data into a contingency table
ct <- cbind(c(k1, n1-k1), c(k2, n2-k2))
rownames(ct) <- c("downtoners", "other words") # optional
colnames(ct) <- c("male", "female")
ct

male female
downtoners 16392 20435
other words 7278388 8371865

Now we can apply various hypothesis tests for contingency tables
chisq.test(ct)

##
Pearson's Chi-squared test with Yates' continuity correction
##
data: ct
X-squared = 58.74, df = 1, p-value = 1.799e-14
fisher.test(ct)

##
Fisher's Exact Test for Count Data
##
data: ct
p-value = 1.677e-14
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.9038133 0.9418732
sample estimates:
odds ratio
0.9226392

3

The frequency difference is highly significant. Fisher’s exact test also returns a confidence interval for the odds
ratio θ as a measure of effect size. Can you interpret this value? Is the difference linguistically meaningful?

A more intuitive effect size measure in this setting, the difference of proportions δ, can be computed with
the specialized proportions test. Keep in mind that the prop.test expects a different input format than a
contingency table.
prop.test(c(k1, k2), c(n1, n2))

##
2-sample test for equality of proportions with continuity
correction
##
data: c(k1, k2) out of c(n1, n2)
X-squared = 58.74, df = 1, p-value = 1.799e-14
alternative hypothesis: two.sided
95 percent confidence interval:
-0.0002358923 -0.0001398754
sample estimates:
prop 1 prop 2
0.002247086 0.002434970

Can you interpret this confidence interval? What is the difference between men and women?

Now it’s your time to experiment with other subcorpora and queries. Can you find interesting expected
or unexpected differences? How do you compute n for frequencies given as sentence counts? And what is a
reasonable sample size for a comparison of the frequency of split infinitives (split.inf.S)?

Advanced R users should also try to automate these comparisons, either by defining their own functions or
by using other data manipulation and summation tools (so it is not necessary to generate a separate table for
each subcorpus).

4

