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Introduction Motivation

Some research questions

vVvYyyvyy

vVvyvyVvVvyypy

How many words did Shakespeare know?

What is the coverage of my treebank grammar on big data?
How many typos are there on the Internet?

Is -ness more productive than -ity in English?

Are there differences in the productivity of nominal
compounds between academic writing and novels?

Does Dickens use a more complex vocabulary than Rowling?
Can a decline in lexical complexity predict Alzheimer's disease?
How frequent is a hapax legomenon from the Brown corpus?
What is appropriate smoothing for my n-gram model?

Who wrote the Bixby letter, Lincoln or Hay?

How many different species of ... are there? (Brainerd 1982)
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Introduction Motivation

Some research questions

vVvYyyvyy

vVvyvyVvVvyypy

M\

coverage estimates
P

M\

productivity

lexical complexity & stylometry
AX

prior & posterior distribution
AN

'Y

unexpected applications
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psiatey
Type-token statistics

» These applications relate token and type counts
» tokens = individual instances (occurrences)
» types = distinct items
» Type-token statistics different from most statistical inference

» not about probability of a specific event
» but about diversity of events and their probability distribution
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psiatey
Type-token statistics

» These applications relate token and type counts

» tokens = individual instances (occurrences)
» types = distinct items

» Type-token statistics different from most statistical inference

» not about probability of a specific event
» but about diversity of events and their probability distribution

> Relatively little work in statistical science

» Nor a major research topic in computational linguistics
» very specialized, usually plays ancillary role in NLP

» Corpus linguistics: TTR & simple productivity measures
» often applied without any statistical inference
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Introduction Motivation

Zipf's law (Zipf 1949)

A) Frequency distributions in natural language are highly skewed
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IB D
Zipf's law (Zipf 1949)

A) Frequency distributions in natural language are highly skewed

B) Curious relationship between rank & frequency

word  r f r-f

the 1. 142,776 142,776
and 2. 100,637 201,274 (Dickens)
be 3. 94,181 282,543
of 4. 74,054 296,216

Stefan Evert T1: Zipf's Law 22 July 2019 | CC-by-sa

7/117



IB D
Zipf's law (Zipf 1949)

A) Frequency distributions in natural language are highly skewed

B) Curious relationship between rank & frequency

word  r f r-f

the 1. 142,776 142,776
and 2. 100,637 201,274
be 3. 04,181 282,543
of 4 74,054 296,216

C) Various explanations of Zipf's law
principle of least effort (Zipf 1949)
optimal coding system, MDL (Mandelbrot 1953, 1962)
random sequences (Miller 1957; Li 1992; Cao et al. 2017)
Markov processes = n-gram models (Rouault 1978)

>

>
>
>

(Dickens)
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Metivation
Zipf's law (Zipf 1949)

A) Frequency distributions in natural language are highly skewed

B) Curious relationship between rank & frequency

word  r f r-f

the 1. 142,776 142,776
and 2. 100,637 201,274 (Dickens)
be 3. 94,181 282,543
of 4. 74,054 296,216

C) Various explanations of Zipf's law

» principle of least effort (Zipf 1949)

» optimal coding system, MDL (Mandelbrot 1953, 1962)

» random sequences (Miller 1957; Li 1992; Cao et al. 2017)
» Markov processes = n-gram models (Rouault 1978)

D) Language evolution: birth-death-process (Simon 1955)

1= not the main topic today!
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Notation & basic concepts
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el s
Tokens & types

our sample: recently, very, not, otherwise, much, very, very,
merely, not, now, very, much, merely, not, very

» N = 15: number of tokens = sample size

» V = 7: number of distinct types = vocabulary size
(recently, very, not, otherwise, much, merely, now)
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el s
Tokens & types

our sample: recently, very, not, otherwise, much, very, very,
merely, not, now, very, much, merely, not, very

» N = 15: number of tokens = sample size
» V = 7: number of distinct types = vocabulary size
(recently, very, not, otherwise, much, merely, now)
type-frequency list
w fu

recently
very

not
otherwise
much
merely
now

HF NN RFR WO =
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Introduction Notation & basic concepts

Zipf ranking

our sample: recently, very, not, otherwise, much, very, very,
merely, not, now, very, much, merely, not, very

» N = 15: number of tokens = sample size

» V = 7: number of distinct types = vocabulary size
(recently, very, not, otherwise, much, merely, now)

Zipf ranking

w

r

very
not
merely
much
now
otherwise
recently

~No ok~ N

o= =N DN WS
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el s
Zipf ranking

our sample: recently, very, not, otherwise, much, very, very,
merely, not, now, very, much, merely, not, very
» N = 15: number of tokens = sample size
» V = 7: number of distinct types = vocabulary size
(recently, very, not, otherwise, much, merely, now)
Zipf ranking - Zipf ranking: adverbs
w r

very
not
merely
much
now
otherwise
recently

frequency
6
1
o

4
I

~No o W=
o= =N DN WS

rank
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Introduction Notation & basic concepts

A realistic Zipf ranking: the Brown corpus

top frequencies bottom frequencies
r f word rank range f randomly selected examples
1 | 69836 | the 7731 — 8271 | 10 | schedules, polynomials, bleak
2 | 36365 | of 8272 — 8922 9 | tolerance, shaved, hymn
3 | 28826 | and 8923 — 9703 8 | decreased, abolish, irresistible
4 | 26126 | to 9704 — 10783 7 | immunity, cruising, titan
5 | 23157 | a 10784 — 11985 6 | geographic, lauro, portrayed
6 | 21314 | in 11986 — 13690 5 | grigori, slashing, developer
7 | 10777 | that 13691 — 15991 4 | sheath, gaulle, ellipsoids
8 | 10182 | is 15992 — 19627 3 | mc, initials, abstracted
9 9968 | was 19628 — 26085 2 | thar, slackening, deluxe
10 9801 | he 26086 — 45215 1 | beck, encompasses, second-place

Stefan Evert T1: Zipf's Law 22 July 2019 | CC-by-sa

12/117



Introduction Notation & basic concepts

A realistic Zipf ranking: the Brown corpus

Zipf ranking: Brown corpus
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Introduction Notation & basic concepts

A realistic Zipf ranking: the Brown corpus

Zipf ranking: Brown corpus
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Introduction Notation & basic concepts

Frequency spectrum

» pool types with f =1 (hapax legomena), types with f =2

(dis legomena), ..., f=m, ...

» V1 = 3: number of hapax legomena (now, otherwise, recently)

» V5, =2: number of dis legomena (merely, much)

» general definition: V,, = |[{w|f, = m}|
Zipf ranking

w r|f frequency
very 115 spectrum
not 213 m| Vp
merely 3|2 1 3
much 4| 2 2 2
now 511 3 1
otherwise | 6 | 1 5 1
recently |7 |1

22 July 2019 | CC-by-sa

14 /117



Introduction Notation & basic concepts

Frequency spectrum

» pool types with f =1 (hapax legomena), types with f =2

(dis legomena), ..., f=m, ...

» V1 = 3: number of hapax legomena (now, otherwise, recently)

» V5, =2: number of dis legomena (merely, much)

» general definition: V,, = |[{w|f, = m}|
Zipf ranking

w
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not
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now
otherwise
recently
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frequency
spectrum
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frequency spectrum: adverbs
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Introduction Notation & basic concepts

A realistic frequency spectrum: the Brown corpus

frequency spectrum: Brown corpus
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Introduction Notation & basic concepts

Vocabulary growth curve

our sample: recently, very, not, otherwise, much, very, very,
merely, not, now, very, much, merely, not, very

> N=1 V(N)=1, Vi(N) =1
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Introduction Notation & basic concepts

Vocabulary growth curve

our sample: recently, very, not, otherwise, much, very, very,
merely, not, now, very, much, merely, not, very
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Introduction Notation & basic concepts

Vocabulary growth curve

our sample: recently, very, not, otherwise, much, very, very,
merely, not, now, very, much, merely, not, very

> N=1, V(N) =1, Vi(N) = 1
> N =3 V(N)=3, Vi(N) =3
> N =7, V(N) =5 Vi(N) =4
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Introduction Notation & basic concepts

Vocabulary growth curve

our sample: recently, very, not, otherwise, much, very, very,

merely, not, now, very, much, merely, not, very

Stefan Evert T1: Zipf's Law

22 July 2019 | CC-by-sa

16 /117



Introduction Notation & basic concepts

Vocabulary growth curve

our sample: recently, very, not, otherwise, much, very, very,
merely, not, now, very, much, merely, not, very

> N=1 V(N)=1, Vi(N) =1
> N=3 V(N)=3, Vo(N) =3
> N=7 V(N)=5, Vi(N) =4
> N =12, V(N) =7, Vi(N) =4
> N =15 V(N) =7, Vi(N) =3
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Introduction Notation & basic concepts

Vocabulary growth curve

our sample: recently, very, not, otherwise, much, very, very,
merely, not, now, very, much, merely, not, very

vocabulary growth curve: adverbs

> N=1 V(N)=1, Vi(N) =1 N
> N=3 V(N)=3 Vy(N)=3 2 °
> N=7 V(N)=5 Vi(N)=4 % .|
> N =12, V(N)=7, Vi(N) =4 N
> N =15 V(N) =7, Vi(N) =3
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Introduction Notation & basic concepts

A realistic vocabulary growth curve: the Brown corpus

] vocabulary growth curve: Brown corpus
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el s
Vocabulary growth in authorship attribution

» Authorship attribution by n-gram tracing applied to the case
of the Bixby letter (Grieve et al. 2018)

» Word or character n-grams in disputed text are compared
against large “training” corpora from candidate authors

Gettysburg Address: Word 2-Grams

60
1

— Lincoln
— Hay

Percent of n-grams Seen
40

20

I T 1
0 200000 400000

Total Words Seen
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Introduction Zipf's law
. . )
Observing Zipf's law
across languages and different linguistic units
o The War of the Worlds Italian Newspaper
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aeley
Observing Zipf's law

Zipf ranking: Brown corpus
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aeley
Observing Zipf's law

Zipf ranking: Brown corpus

o
%00,
o
o
S
e
>
&}
c
[
=]
g g9
= S
e
- -
I T T T I
1 10 100 1000 10000

rank

Stefan Evert T1: Zipf's Law 22 July 2019 | CC-by-sa 22 /117



aeley
Observing Zipf's law

» Straight line in double-logarithmic space corresponds
to power law for original variables

» This leads to Zipf's (1949; 1965) famous law:
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aeley
Observing Zipf's law

» Straight line in double-logarithmic space corresponds
to power law for original variables

» This leads to Zipf's (1949; 1965) famous law:

> If we take logarithm on both sides, we obtain:

log f, =log C — a-logr
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Observing Zipf's law
» Straight line in double-logarithmic space corresponds

to power law for original variables
» This leads to Zipf's (1949; 1965) famous law:

> If we take logarithm on both sides, we obtain:

log f, =log C —a-logr
N——" N——
y X
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aeley
Observing Zipf's law

» Straight line in double-logarithmic space corresponds
to power law for original variables

» This leads to Zipf's (1949; 1965) famous law:

> If we take logarithm on both sides, we obtain:

log f, =log C —a-logr
N——" N——
y X

» Intuitive interpretation of a and C:

> ais slope determining how fast log frequency decreases
» log C is intercept, i.e. log frequency of most frequent word
(r=1=logr=0)
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aeley
Observing Zipf's law

Least-squares fit = linear regression in log-space (Brown corpus)
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A
Zipf-Mandelbrot law

Mandelbrot (1953, 1962)

> Mandelbrot's extra parameter:

C

o=
(r+b)2

» Zipf's law is special case with b =0
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A
Zipf-Mandelbrot law

Mandelbrot (1953, 1962)

> Mandelbrot's extra parameter:

= C

(r+b)2
» Zipf's law is special case with b =0
» Assuming a =1, C = 60,000, b = 1:
» For word with rank 1, Zipf's law predicts frequency of 60,000;
Mandelbrot's variation predicts frequency of 30,000

» For word with rank 1,000, Zipf's law predicts frequency of 60;
Mandelbrot's variation predicts frequency of 59.94
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A
Zipf-Mandelbrot law

Mandelbrot (1953, 1962)

> Mandelbrot's extra parameter:

C
fi=
(r+b)2
» Zipf's law is special case with b =0
» Assuming a =1, C = 60,000, b = 1:
» For word with rank 1, Zipf's law predicts frequency of 60,000;
Mandelbrot's variation predicts frequency of 30,000
» For word with rank 1,000, Zipf's law predicts frequency of 60;
Mandelbrot's variation predicts frequency of 59.94

» Zipf-Mandelbrot law forms basis of statistical LNRE models

» ZM law derived mathematically as limiting distribution of
vocabulary generated by a character-level Markov process
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A
Zipf-Mandelbrot law

Non-linear least-squares fit (Brown corpus)

10

log g

log rank =
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6575
zipfR

Evert and Baroni (2007)

» http://zipfR.R-Forge.R-Project.org/
» Conveniently available from CRAN repository

P> Package vignette = gentle tutorial introduction
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6575
First steps with zipfR

» Set up a folder for this course, and make sure it is your
working directory in R (preferably as an RStudio project)
» Install the most recent version of the zipfR package
> tutorial requires version 0.7 or newer

» Package, handouts, code samples & data sets available from
http://zipfr.r-forge.r-project.org/lrec2018.html

> library(zipfR)
> 7zipfR # documentation entry point

> vignette("zipfr-tutorial") # read the zipfR tutorial
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el el
Loading type-token data

> Most convenient input: sequence of tokens as text file in
vertical format (“one token per line")
== mapped to appropriate types: normalized word forms, word
pairs, lemmatized, semantic class, n-gram of POS tags, ...
1= language data should always be in UTF-8 encoding!
v |arge files can be compressed (.gz, .bz2, .xz)
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el el
Loading type-token data

> Most convenient input: sequence of tokens as text file in
vertical format (“one token per line")
== mapped to appropriate types: normalized word forms, word
pairs, lemmatized, semantic class, n-gram of POS tags, ...
1= language data should always be in UTF-8 encoding!
v |arge files can be compressed (.gz, .bz2, .xz)

» Sample data: brown_adverbs.txt on tutorial homepage

» lowercased adverb tokens from Brown corpus (original order)
== download and save to your working directory
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el el
Loading type-token data

> Most convenient input: sequence of tokens as text file in
vertical format (“one token per line")

== mapped to appropriate types: normalized word forms, word
pairs, lemmatized, semantic class, n-gram of POS tags, ...

1= language data should always be in UTF-8 encoding!

v |arge files can be compressed (.gz, .bz2, .xz)

» Sample data: brown_adverbs.txt on tutorial homepage

» lowercased adverb tokens from Brown corpus (original order)
== download and save to your working directory

> adv <- readLines("brown_adverbs.txt", encoding="UTF-8")

> head(adv, 30) # mathematically, a ‘'vector’ of tokens
> length(adv) # sample size = 52,037 tokens

Stefan Evert T1: Zipf's Law 22 July 2019 | CC-by-sa 30/117



Descriptive statistics: type-frequency list

> adv.tfl <- vec2tfl(adv)

> adv.tfl
k f type
not 1 4859 not
n’t 2 2084 n’t
so 3 1464 so
only 4 1381 only
then 5 1374 then
now 6 1309 now
even 7 1134 even
as 8 1089 as

N \')

52037 1907

> N(adv.tfl) # sample size
> V(adv.tfl) +# type count

m] = = =
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Descriptive statistics: type-frequency list

» Visualize descriptive statistics with plot method

> plot(adv.tfl) # Zipf ranking
> plot(adv.tfl, log="xy") # logarithmic scale recommended
Type-Frequency List (Zipf ranking)
g o
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o
| 0 oo
=
0
g
S o]
g 0
o
-
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rank
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Descriptive statistics: frequency spectrum

> adv.spc <- tfl2spc(adv.tfl) # or directly with vec2spc
> adv.spc
m Vm
762
260
144
99
69
50
40
34

00 ~N O O WN -
c 00 N O O WN -

N '
52037 1907
> N(adv.spc) # sample size

> V(adv.spc) # type count

m] = = =
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Descriptive statistics: frequency spectrum

> plot(adv.spc) # barplot of frequency spectrum
> ?plot.spc # see help page for further options

Frequency Spectrum

Vi
400 600 800
| | |
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1

O‘III..-------_

9 10 11 12 13 14 15

m
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Descriptive statistics: vocabulary growth

» VGC lists vocabulary size V(N) at different sample sizes N
» Optionally also spectrum elements V,(N) up to m.max

> adv.vgc <- vec2vgc(adv, m.max=2)
> plot(adv.vgc, add.m=1:2) # plot all three VGCs

o Vocabulary Growth
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z 8
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S g |
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0 10000 20000 30000 40000 50000
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Further example data sets

?Brown words from Brown corpus
7?BrownSubsets various subsets
?Dickens words from novels by Charles Dickens
?ItaPref ltalian word-formation prefixes
?TigerNP NP and PP patterns from German Tiger treebank
?Baayen2001 frequency spectra from Baayen (2001)

?EvertLuedeling2001 German word-formation affixes (manually
corrected data from Evert and Lideling 2001)

Practice:
» Explore these data sets with descriptive statistics

» Try different plot options (from help pages ?plot.tfl,
?plot.spc, 7plot.vgc)
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Population & samples
Outline

LNRE models

Population & samples
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NN EES  Population & samples

Why do we need statistics?

» Often want to compare samples of different sizes
1z extrapolation of VGC & productivity measures
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henkoltlons
Why do we need statistics?

» Often want to compare samples of different sizes
1z extrapolation of VGC & productivity measures

> Interested in productivity of affix, vocabulary of author, .. .;
not in a particular text or sample

1= statistical inference from sample to population
= significance of differences in productivity
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henkoltlons
Why do we need statistics?

» Often want to compare samples of different sizes
1z extrapolation of VGC & productivity measures

> Interested in productivity of affix, vocabulary of author, .. .;
not in a particular text or sample

1= statistical inference from sample to population
= significance of differences in productivity

» Discrete frequency counts are difficult to capture with
generalizations such as Zipf's law

== Zipf's law predicts many impossible types with 1 < f, < 2
1 population does not suffer from such quantization effects
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Population & samples
LNRE models

» This tutorial introduces the state-of-the-art LNRE approach
proposed by Baayen (2001)

» LNRE = Large Number of Rare Events

» LNRE uses various approximations and simplifications to
obtain a tractable and elegant model

» Of course, we could also estimate the precise discrete
distributions using MCMC simulations, but ...

1. LNRE model usually minor component of complex procedure
2. often applied to very large samples (N > 1 M tokens)
3. still better than naive least-squares regression on Zipf ranking
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G s s
The LNRE population

» Population: set of S types w; with occurrence probabilities ;
» S = population diversity can be finite or infinite (S = c0)
> Not interested in specific types = arrange by decreasing
probability: m3 > m > w3 > - -
= impossible to determine probabilities of all individual types

» Normalization: my +m + ...+ 715 =1
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G s s
The LNRE population

>
>

Population: set of S types w; with occurrence probabilities 7;
S = population diversity can be finite or infinite (S = c0)
Not interested in specific types = arrange by decreasing
probability: m3 > m > w3 > - -

= impossible to determine probabilities of all individual types

Normalization: w1 +m + ...+ 715 =1

Need parametric statistical model to describe full population
(esp. for S = o0), i.e. a function i — 7;
> type probabilities 7; cannot be estimated reliably from a
sample, but parameters of this function can
» NB: population index i # Zipf rank r
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G s s
What should the population look like?
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NN EES  Population & samples

Zipf-Mandelbrot law as a population model
» Zipf-Mandelbrot law for type probabilities:

T = —C
" (i+b)?

[} [ =
Stefan Evert T1: Zipf's Law
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LNRE models Population & samples

Zipf-Mandelbrot law as a population model

» Zipf-Mandelbrot law for type probabilities:
C

T = s

(i+b)2

» Two free parameters: a>1and b >0

== C is not a parameter but a normalization constant,
needed to ensure that >, 7 =1
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Zipf-Mandelbrot law as a population model

» Zipf-Mandelbrot law for type probabilities:
C

T = s

(i+b)2

» Two free parameters: a>1and b >0

== C is not a parameter but a normalization constant,
needed to ensure that >, 7 =1

» Third parameter: S >0 or S =
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LNRE models Population & samples

Zipf-Mandelbrot law as a population model

» Zipf-Mandelbrot law for type probabilities:
C

T = s

(i+b)2

» Two free parameters: a>1and b >0

== C is not a parameter but a normalization constant,
needed to ensure that >, 7 =1

» Third parameter: S >0 or S =

» This is the Zipf-Mandelbrot population model (Evert 2004)

» ZM for Zipf-Mandelbrot model (S = o0)
» fZM for finite Zipf-Mandelbrot model
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G s s
The parameters of the Zipf-Mandelbrot model
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G s s
The parameters of the Zipf-Mandelbrot model
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LNRE models Population & samples

Sampling from a population model

Assume we believe that the population we are interested in can be
described by a Zipf-Mandelbrot model:

000 001 002 003 004 005
L L L L

1e-04  Se-04

T T T
0 10 20 30 40 50 12 5 10 20 50 100

k k

Use computer simulation to generate random samples:

» Draw N tokens from the population such that in
each step, type w; has probability 7; to be picked

» This allows us to make predictions for samples (= corpora)
of arbitrary size N
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NN EES  Population & samples

Sampling from a population model

#1: 1 42 34 23 108 18 48

18 1
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NN EES  Population & samples

Sampling from a population model

#1: 1 42 34 23 108 18 48
time order room school town course area course time

18 1
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NN EES  Population & samples

Sampling from a population model

#1: 1 42 34 23 108 18 48 18 1
time order room school town course area course time
#2: 286 28 23 36 3

4 7

4 8
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NN EES  Population & samples

Sampling from a population model

#1: 1 42 34 23 108 18 48 18 1
time order room school town course area course time
#2: 286 28 23 36 3 4 7 4 8
#3: 2 11 105 21 11 17 17

1 16
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LNRE models Population & samples

Sampling from a population model

#1:

#2:
#3:
#4:
#5:
#6:
#T:
#8:

Stefan Evert T1: Zipf's Law
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time order room school town course area course time
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G s s
Samples: type frequency list & spectrum

rank r
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G s s
Samples: type frequency list & spectrum

rank r | f, typei
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LNRE models Population & samples

Random variation in type-frequency lists

2 Sample #1
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LNRE models Population & samples

Random variation: frequency spectrum

Sample #1
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LNRE models Population & samples

Random variation: frequency spectrum
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LNRE models Population & samples

Random variation: frequency spectrum
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LNRE models Population & samples

Random variation: frequency spectrum

Sample #4
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LNRE models Population & samples

Random variation: vocabulary growth curve

§ Sample #1
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LNRE models Population & samples

Random variation: vocabulary growth curve

§ Sample #2
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LNRE models Population & samples

Random variation: vocabulary growth curve
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LNRE models Population & samples

Random variation: vocabulary growth curve

§ Sample #4
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LNRE models Population & samples

Expected values

» There is no reason why we should choose a particular sample
to compare to the real data or make a prediction — each one is
equally likely or unlikely

» Take the average over a large number of samples, called
expected value or expectation in statistics

> Notation: E[V(N)] and E[V(N)]
» indicates that we are referring to expected values for a sample
of size N
> rather than to the specific values V and V,,
observed in a particular sample or a real-world data set

» Expected values can be calculated efficiently without
generating thousands of random samples
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LNRE models Population & samples

The expected frequency spectrum
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LNRE models Population & samples

The expected frequency spectrum

Sample #2
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LNRE models Population & samples

The expected frequency spectrum
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LNRE models Population & samples

The expected frequency spectrum
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LNRE models Population & samples

The expected vocabulary growth curve
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G s s
Prediction intervals for the expected VGC

S Sample #1 S Sample #1
N N

E[V(N)]
100
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— V(N) — V(N)
— E[V(N)] — Evs(N)]

° T T T T i T T T T

0 200 400 600 800 1000 0 200 400 600 800 1000

“Confidence intervals” indicate predicted sampling distribution:

1= for 95% of samples generated by the LNRE model, VGC will
fall within the range delimited by the thin red lines
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LNRE models Population & samples

Parameter estimation by trial & error
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LNRE models Population & samples

Parameter estimation by trial & error
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LNRE models Population & samples

Parameter estimation by trial & error
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LNRE models Population & samples

Parameter estimation by trial & error
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LNRE models Population & samples

Parameter estimation by trial & error
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LNRE models Population & samples

Parameter estimation by trial & error

8 a=1.7,b=80
8
&
W observed
Q B ZM model
[=3
S 4
[=
Y
(=3
S 4
'_E| n
> —
=
u
(=3
3
> 8
o
o i
o |
o
wn
o ih“hl—-—-—

V(N)/E[V(N)]
10000 20000 30000 40000 5000C
Il

a=1.7,b=80

—— observed
—— ZM model

0

T T T T T
0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

N

Stefan Evert T1: Zipf's Law 22 July 2019 | CC-by-sa

56 /117



LNRE models Population & samples

Parameter estimation by trial & error
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LNRE models Population & samples

Automatic parameter estimation

§ _ a=2.39,b=1968.49
n
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» By trial & error we found a = 2.0 and b = 550
> Automatic estimation procedure: a = 2.39 and b = 1968
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The mathematics of LNRE
Outline

LNRE models

The mathematics of LNRE
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Applications & examples Productivity & lexical diversity
QOutline

Applications & examples
Productivity &
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Applications & examples Productivity & lexical diversity

Measuring morphological productivity
example from Evert and Liideling (2001)

Vocabulary Growth Curves
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Applications & examples Productivity & lexical diversity

Measuring morphological productivity
example from Evert and Liideling (2001)

a=1.45,b=234.59, S = 20587
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Applications & examples Productivity & lexical diversity

Measuring morphological productivity
example from Evert and Liideling (2001)

Vocabulary Growth Curves
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Applications & examples Productivity & lexical diversity

Quantitative measures of productivity
(Tweedie and Baayen 1998; Baayen 2001)

> Baayen's (1991) productivity index P
(slope of vocabulary growth curve)

v

P=w

» TTR = type-token ratio

%
TTR= —
N

» Zipf-Mandelbrot slope
a

> Herdan's law (1964)

__logV
" logN
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Applications & examples Productivity & lexical diversity

Quantitative measures of productivity
(Tweedie and Baayen 1998; Baayen 2001)

> Baayen's (1991) productivity index P > Yule (1944) / Simpson (1949)
(slope of vocabulary growth curve)

m*Vim — N
Vi K = 10000 z:’"—
p=2 N
N
» Guiraud (1954)
» TTR = type-token ratio
"
TTR = % VN
> G
» Zipf-Mandelbrot slope Sichel (1975)
V.
a S = 72
> Herdan's law (1964) > Honoré (1979)
_ log V _ logN
log N 1 %
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Applications & examples Productivity & lexical diversity

Productivity measures for bare singulars in the BNC

spoken written

%4 2,039 12,876
N 6,766 85,750
K 86.84 28.57
R 24.79 43.97
S 0.13 0.15
C 0.86 0.83
P 0.21 0.08
TTR 0.301 0.150
a 1.18 1.27
pop. S 15,958 36,874
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VAT ERIRS ST DI S Productivity & lexical diversity

Productivity measures for bare singulars in the BNC

vocabulary growth curves (BNC)

spoken written
1% 2,039 12,876 8
N 6,766 85,750 g
K 86.84 28.57 g
R 24.79 43.97 z
S 0.13 0.15 €1
C 0.86 0.83 ‘]
P 0.21 0.08
TTR 0.301 0.150 g —
2 1.18 1.27 ) S
pop. S 15 , 058 36 . 874 0 20000 40000 60000 80000

N
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Applications & examples Productivity & lexical diversity

Are these “lexical constants” really constant?
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Applications & examples Practical LNRE modelling
QOutline

Applications & examples

Practical LNRE modelling
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Applications & examples Practical LNRE modelling

interactive demo
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Significance testing
Outline

Challenges

Significance testing
o

=
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Sl
Case study: Iris Murdoch & early symptoms of AD

(Evert et al. 2017)
» Renowned British author (1919-1999)

» Published a total of 26 novels, mostly well received by critics

» Murdoch experienced unexpected difficulties composing her
last novel, received “without enthusiasm” (Garrard et al. 2005)

» Diagnosis of Alzheimer's disease shortly after publication

Murdoch novel reveals Alzheimer's

The last novel by the author
Iris Murdoch reveals the
first signs of Alzheimer's
disease, experts say.

A team from University College |
London say their examination
of works from throughout
Dame Iris's career could be
used to help diagnose others.

Experts analysed three of Dame Iris's
books

They found the structure and
grammar of her novels was relatively unchanged, but her
language was noticeably simpler in her last novel, 'Jackson's
Dilemma'.

The study is published online by the journal Brain.
http://news.bbc.co.uk/2/hi/health/4058605.stm
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Significance testing
Case study: Iris Murdoch & early symptoms of AD

(Evert et al. 2017)

» Renowned British author (1919-1999)

» Published a total of 26 novels, mostly well received by critics

» Murdoch experienced unexpected difficulties composing her
last novel, received “without enthusiasm” (Garrard et al. 2005)

» Diagnosis of Alzheimer's disease shortly after publication

Conflicting results:

» Decline of lexical diversity
in last novel
(Garrard et al. 2005;
Pakhomov et al. 2011)

» No clear effects found
(Le et al. 2011)
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Murdoch novel reveals Alzheimer's

The last novel by the author
Iris Murdoch reveals the
first signs of Alzheimer's
disease, experts say.

A team from University College |
London say their examination
of works from throughout
Dame Iris's career could be
used to help diagnose others.

Experts analysed three of Dame Iris's
books

They found the structure and
grammar of her novels was relatively unchanged, but her
language was noticeably simpler in her last novel, 'Jackson's
Dilemma'.

The study is published online by the journal Brain.
http://news.bbc.co.uk/2/hi/health/4058605.stm
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(@IS Significance testing

Case study: Iris Murdoch & early symptoms of AD
(Evert et al. 2017)

» Corpus data

» 19 out of 26 novels written by Iris Murdoch
» including 9 last novels, spanning a period of almost 20 years
» acquired as e-books (no errors due to OCR)

» Pre-processing and annotation

» Stanford CoreNLP (Manning et al. 2014) for tokenization,
sentence splitting, POS tagging, and syntactic parsing

» exclude dialogue based on typographic quotation marks
(following Garrard et al. 2005; Pakhomov et al. 2011)

P> The challenge

= assess significance of differences in productivity for single texts
1= might explain conflicting results in prior work
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(@IS Significance testing

Measures of vocabulary diversity = productivity
(Evert et al. 2017)
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Measures of vocabulary diversity = productivity
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(@IS Significance testing

Cross-validation for productivity measures
(Evert et al. 2017)

As a first step:
» Partition each novel into folds of 10,000 consecutive tokens
w k > 6 folds for each novel (leftover tokens discarded)
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(@IS Significance testing

Cross-validation for productivity measures
(Evert et al. 2017)

As a first step:
» Partition each novel into folds of 10,000 consecutive tokens
w k > 6 folds for each novel (leftover tokens discarded)
Then:

» Evaluate complexity measure of interest on each fold

Yi,-- 5 Yk
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Sl
Cross-validation for productivity measures
(Evert et al. 2017)

As a first step:
» Partition each novel into folds of 10,000 consecutive tokens
w k > 6 folds for each novel (leftover tokens discarded)
Then:

» Evaluate complexity measure of interest on each fold

Yi,---5 Yk
> Compute macro-average as overall measure for the entire text

_:YI+"’+Yk
y K

» Instead of value x obtained by evaluating measure on full text
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(@IS Significance testing

Cross-validation for productivity measures
(Evert et al. 2017)

Significance testing procedure:
» Standard deviation o of individual folds estimated from data
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(@IS Significance testing

Cross-validation for productivity measures
(Evert et al. 2017)

Significance testing procedure:
» Standard deviation o of individual folds estimated from data

2 2 1 d 2
oS =mi:1(}/i_)/)

» Standard deviation of macro average can be computed as

g S

= RSk
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(@IS Significance testing

Cross-validation for productivity measures
(Evert et al. 2017)

Significance testing procedure:
» Standard deviation o of individual folds estimated from data

2 2 1 & —\2
o~ st = (vi—¥)
k—14
i=1
» Standard deviation of macro average can be computed as
o s
oy = —F—=R~R —
Y Vk Wk

» Asymptotic 95% confidence intervals are then given by
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(@IS Significance testing

Cross-validation for productivity measures
(Evert et al. 2017)

Significance testing procedure:
» Standard deviation o of individual folds estimated from data

2 2 1 & —\2
o~ st = (vi—¥)
k—14
i=1
» Standard deviation of macro average can be computed as
o s
oy = —F—=R~R —
Y Vk Wk

» Asymptotic 95% confidence intervals are then given by
y£1.96- 0y

» Comparison of samples with Student’s t-test, based on pooled
cross-validation folds (feasible even for ny = 1)
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(@IS Significance testing

Productivity measures with confidence intervals
(Evert et al. 2017)
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(@IS Significance testing

Productivity measures with confidence intervals
(Evert et al. 2017)
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(@IS Significance testing

Productivity measures with confidence intervals
(Evert et al. 2017)
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type count / TTR Honoré H
significance test vs. first 17 novels

t = —6.1, df=5.52, p = .0012**
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(@IS Significance testing

Cross-validated measures depend on fold size!
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(@IS Significance testing

Cross-validated measures depend on fold size!
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(@ FIEECSS Outlook

Research programme for LNRE models

» Improve efficiency & numerical accuracy of implementation

» numerical integrals instead of differences of Gamma functions
» better parameter estimation (gradient, aggregated spectrum)

» Analyze accuracy of LNRE approximations

» comprehensive simulation experiments, esp. for small samples
» Specify more flexible LNRE population models

» my favourite: piecewise Zipfian type density functions

» Baayen (2001): mixture distributions (different parameters)
» Develop hypothesis tests & confidence intervals

» key challenge: goodness-of-fit vs. confidence region

» prediction intervals for model-based extrapolation
» Simulation experiments for productivity measures

» Can we find a quantitative measure that is robust against
confounding factors and corresponds to intuitive notions of
productivity & lexical diversity?
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(@ FIEECSS Outlook

Research programme for LNRE models

» Is non-randomness a problem?
» not for morphological productivity = ECHO correction
» tricky to include explicitly in LNRE approach

» Do we need LNRE models for practical applications?

> better productivity measures + empirical sampling variation
» based on cross-validation approach (Evert et al. 2017)

» How important is semantics & context?
» Does it make sense to measure productivity and lexical
diversity purely in terms of type-token distributions?
» e.g. register variation for morphological productivity
» e.g. semantic preferences in productive slots of construction
> type-token ratio # complexity of author’s vocabulary
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(@ FIEECSS Outlook

Thank you!
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