
Statistics for Linguists with R – a SIGIL course 

Unit 2: Corpus Frequency Data 
& Statistical Inference

Marco Baroni1 & Stefan Evert2 
http://SIGIL.R-Forge.R-Project.org/  

1Center for Mind/Brain Sciences, University of Trento 
2Corpus Linguistics Group, FAU Erlangen-Nürnberg  

http://SIGIL.R-Forge.R-Project.org


Frequency estimates & comparison
◆ How often is kick the bucket really used? 
◆ What are the characteristics of “translationese”? 
◆ Do Americans use more split infinitives than 

Britons? What about British teenagers? 
◆ What are the typical collocates of cat? 
◆ Which keywords are characteristic of a particular 

domain, newspaper, author or discourse? 
◆ Can the next word in a sentence be predicted? 
◆ Do native speakers prefer constructions that are 

grammatical according to some linguistic theory? 
➡ evidence from frequency comparisons / estimates
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A simple toy problem

◆ American English style guide claims that 
• “In an average English text, no more than 15% of the 

sentences are in passive voice. So use the passive 
sparingly, prefer sentences in active voice.” 

• http://www.ego4u.com/en/business-english/grammar/passive 
actually states that only 10% of English sentences are 
passives (as of January 2009)! 

◆ We have doubts and want to verify this claim

!3

 How many passives are there in English?

http://www.ego4u.com/en/business-english/grammar/passive


From research question to 
statistical analysis
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From research question to 
statistical analysis

!5

linguistic  
questionhypothesis

problem  
operationalisation

• What is “English”? 
• How do you count 

passives?

corpus 
data



Against “absolute” frequency

◆ Are there 20,000 passives? 
• Brown (1M words) 

◆ Or 1 million? 
• BNC (90M words) 

◆ Or 5.1 million? 
• ukWaC sampler 

(450M words)
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How do you count passives?

◆ Only relative frequency can be meaningful! 

◆ What is a sensible unit of measurement? 
… 20,300 per million words? 

… 390 per thousand sentences? 

… 28 per hour of recorded speech? 

… 4,000 per book? 

◆ How many passives could there be at most?
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How do you count passives?

◆ How many passives could there be at most? 
• every VP can be in active or passive voice 

• frequency of passives has a meaningful interpretation 
by comparison with frequency of potential passives 

◆ What proportion of VPs are in passive voice? 
• easier: proportion of sentences that contain a passive 

• in general, proportion wrt. some unit of measurement 

◆ Relative frequency = proportion π 
!8



From research question to 
statistical analysis
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Statistics

From research question to 
statistical analysis
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Statistics

From research question to 
statistical analysis
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The library metaphor

◆ Extensional definition of a language: 
“All utterances made by speakers of the  
  language under appropriate conditions, 
  plus all utterances they could have made” 

◆ Imagine a huge library with all the books  
written in a language, as well as all the  
hypothetical books that have never been written 
 
➞  library metaphor (Evert 2006)
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From research question to 
statistical analysis
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A random sample of a language

◆ Apply statistical procedure to linguistic problem 
➪ need random sample of objects from population 

◆ Quiz: What are the objects in our population? 
• words? sentences? texts? … 

◆ Objects = whatever unit of measurement the 
proportions of interest are based on 
• we need to take a random sample of such units
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The library metaphor

◆ Random sampling in the library metaphor 

• in order to take a sample of sentences: 

• walk to a random shelf …  
… pick a random book …  
… open a random page …  
… and choose a random sentence from the page 

• this gives us 1 item for our sample 

• repeat n times for sample size n
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Types, tokens and proportions

◆ Proportions and relative sample frequencies are  
defined formally in terms of types & tokens 

◆ Relative frequency of type v in sample {t1, …, tn}  
= proportion of tokens ti that belong to this type 

◆ Compare relative sample frequency p against 
(hypothesised) population proportion π

!16
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Types, tokens and proportions

◆ Example: word frequencies 
• word type = dictionary entry (distinct word) 

• word token = instance of a word in library texts 

◆ Example: passive VPs 
• relevant VP types = active or passive (➞ abstraction) 

• VP token = instance of VP in library texts 

◆ Example: verb sucategorisation 
• relevant types = itr., tr., ditr., PP-comp., X-comp, … 

• verb token = occurrence of selected verb in text
!17



Inference from a sample
◆ Principle of inferential statistics 

• if a sample is picked at random, proportions should be 
roughly the same in sample and population 

◆ Take a sample of 100 sentences 
• observe 19 passives ➞ p = 19% = .19 

• style guide ➞ population proportion π = 15% 

• p > π  ➞ reject claim of style guide? 

◆ Take another sample, just to be sure 
• observe 13 passives ➞ p = 13% = .13 

• p < π  ➞ claim of style guide confirmed?
!18



Sampling variation

◆ Random choice of sample ensures proportions 
are the same on average in sample & population 

◆ But it also means that for every sample we will 
get a different value because of chance effects  
➞ sampling variation 
• problem: erroneous rejection of style guide's claim 

results in publication of a false result 

◆ The main purpose of statistical methods is to 
estimate & correct for sampling variation 
• that’s all there is to inferential statistics, really
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Reminder: The role of statistics
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The null hypothesis

!21

◆ Our “goal” is to refute the style guide's claim, 
which we call the null hypothesis H0 

• we also refer to π0 = .15 as the null proportion 

◆ Erroneous rejection of H0 is problematic 
• leads to embarrassing publication of false result 

• known as a type I error in statistics 

◆ Need to control risk of a type I error

H0 : ⇥ � .15



Estimating sampling variation
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◆ Assume that style guide's claim H0 is correct 
• i.e. rejection of H0 is always a type I error 

◆ Many corpus linguists set out to test H0 
• each one draws a random sample of size n = 100 

• how many of the samples have the expected k = 15 
passives, how many have k = 19, etc.? 

• if we are willing to reject H0 for k = 19 passives in a 
sample, all corpus linguists with such a sample will 
publish a false result 

• risk of type I error = percentage of such cases



Estimating sampling variation

◆ We don’t need an infinite number of monkeys 
(or corpus linguists) to answer these questions 
• randomly picking sentences from our metaphorical 

library is like drawing balls from an infinite urn 

• red ball = passive sent. / white ball = active sent. 

• H0: assume proportion of red balls in urn is 15% 

◆ This leads to a binomial distribution
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Comic relief
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tail probability  
= 16.3%

tail probability  
= 9.9%

➞  risk of false rejection = p-value = 26.2%



Statistical hypothesis testing
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◆ Statistical hypothesis tests 
• define a rejection criterion for refuting H0 

• control the risk of false rejection (type I error) to a 
“socially acceptable level” (significance level α) 

• p-value = risk of type I error given observation, 
interpreted as amount of evidence against H0 

◆ Two-sided vs. one-sided tests 
• in general, two-sided tests are recommended (safer) 

• one-sided test is plausible in our example



Hypothesis tests in practice
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• http://sigil.collocations.de/wizard.html 
• http://corpora.lancs.ac.uk/sigtest/ 
• http://vassarstats.net/ 
• SPSS, SAS, Excel, … 
• We want to do it in                  , of  course



Binomial hypothesis test in R

◆ Relevant R function:  binom.test() 

◆ We need to specify 
• observed data: 19 passives out of 100 sentences 

• null hypothesis: H0: π = 15% 

◆ Using the binom.test() function: 
 > binom.test(19, 100, p=.15) # two-sided 

 > binom.test(19, 100, p=.15, # one-sided  
  alternative="greater")

!28



Binomial hypothesis test in R

> binom.test(19, 100, p=.15) 

 Exact binomial test 

data:  19 and 100  

number of successes = 19, number of  
trials = 100, p-value = 0.2623 

alternative hypothesis: true probability of 
success is not equal to 0.15  

95 percent confidence interval:  
 0.1184432 0.2806980  

sample estimates:  
probability of success  
                  0.19
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Rejection criterion & 
significance level

> binom.test(19, 100, p=.15)$p.value  
[1] 0.2622728 

> binom.test(23, 100, p=.15)$p.value  
[1] 0.03430725 

> binom.test(25, 100, p=.15)$p.value  
[1] 0.007633061 

> binom.test(29, 100, p=.15)$p.value  
[1] 0.0003529264

!30

p > .05   n.s.

p < .05 = α  *

p < .01 = α  **

p < .001 = α ***



Type II errors

◆ Rejection criterion controls risk of type I error 
• only for situation in which H0 is true 

◆ Type II error = failure to reject incorrect H0 
• for situation in which H0 is not true  
➞ rejection correct, non-rejection is an error 

◆ What is the risk of a type II error? 
• depends on unknown true population proportion π 

• intuitively, risk of type II error will be low if the 
difference δ = π – π0 (the effect size) is large enough

!31
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binomial sampling 
distribution under H0

rejection by one-sided 
binomial test (p < .05*)
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sampling distribution 
for hypothetical π=.25 

binomial sampling 
distribution under H0

type II risk for k ≤ 21 
= 21.1%
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Power

◆ Type II error = failure to reject incorrect H0 
• the larger the difference between H0 and the true 

population proportion, the more likely it is that  
H0 can be rejected based on a given sample 

• a powerful test has a low type II error 

• power analysis explores the relationship between 
effect size and risk of type II error 

◆ Key insight: larger sample = more power 
• relative sampling variation becomes smaller 

• power also depends on significance level
!36



Power analysis for binomial test
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Power analysis for binomial test

◆ Key factors determining the power of a test 
• sample size ➞ more evidence = greater power 

• significance level ➞ trade-off btw. type I / II errors 

◆ Influence of hypothesis test procedure 
• one-sided test more powerful than two-sided test 

• parametric tests more powerful than non-parametric 

• statisticians look for “uniformly most powerful” test 

◆ Tests can become too powerful! 
• reject H0 for 15.1% passives with n = 1,000,000
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Confidence interval

◆ We now know how to test a null hypothesis H0, 
rejecting it only if there is sufficient evidence 

◆ But what if we do not have an obvious  
null hypothesis to start with? 
• this is typically the case in (computational) linguistics 

◆ We can estimate the true population proportion 
from the sample data (relative frequency) 
• sampling variation ➞ range of plausible values 

• such a confidence interval can be constructed by 
inverting hypothesis tests (e.g. binomial test)

!39



Confidence interval

!40
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Confidence intervals
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◆ Confidence interval = range of plausible values 
for true population proportion 
• H0 rejected by test iff π0 is outside confidence interval 

◆ Size of confidence interval depends on power of 
the test (i.e. sample size and significance level)

n ⇥ 100 n ⇥ 1,000 n ⇥ 10,000
k ⇥ 19 k ⇥ 190 k ⇥ 1,900

⌃ ⇥ .05 11.8% . . . 28.1% 16.6% . . . 21.6% 18.2% . . . 19.8%
⌃ ⇥ .01 10.1% . . . 31.0% 15.9% . . . 22.4% 18.0% . . . 20.0%
⌃ ⇥ .001 8.3% . . . 34.5% 15.1% . . . 23.4% 17.7% . . . 20.3%

Table 1: Binomial confidence intervals for various sample sizes n and confidence levels ⌃.
The maximum-likelihood estimate is ⌥̂ ⇥ 19% in each case.

f ⇥ 190 and n ⇥ 1,000 yield a confidence interval of ⌥ � 16.6% . . . 21.6% (the common1

mathematical notation for such a range, which you may encounter in technical literature,2

is ⇤.166, .216⌅).3

The width of a binomial confidence interval depends on the sample size n and the sig-4

nificance level ⌃ used in the test. As we have seen in Section 2, a larger value of n makes5

it easier to reject the null hypothesis. Obviously, adopting a higher (i.e., less conserva-6

tive) value of ⌃ also makes it easier to reject H0. Hence these factors lead to a narrower7

confidence interval (which, to reiterate this important point, consists of all estimates x for8

which H0 is not rejected). Table 1 shows confidence intervals for several di�erent sam-9

ple sizes and significance levels. A confidence interval for a significance level of ⌃ ⇥ .0510

(which keeps the risk of false rejection below 5%) is often called a 95% confidence in-11

terval, indicating that we are 95% certain that the true population value ⌥ is somewhere12

within the range (since we can rule out any other value with 95% certainty). Similarly, a13

significance level of ⌃ ⇥ .01 leads to a 99% confidence interval.14

Confidence intervals can be seen as an extension of hypothesis tests. The 95% confi-15

dence interval for the observed data immediately tells us whether a given null hypothesis16

H0 : ⌥ ⇥ x would be rejected by the binomial test at significance level ⌃ ⇥ .05. Namely,17

H0 is rejected if and only if the hypothesized value x does not fall within the confidence18

interval. The width of a confidence interval illustrates thus how easily a null hypothesis19

can be rejected, i.e., it gives an indication of how much the (unknown) true population20

proportion ⌥ must di�er from the value stipulated by the null hypothesis (which is often21

denoted by the symbol ⌥0) so that H0 will reliably be rejected by the hypothesis test. In-22

tuitively speaking, the di�erence between ⌥ and ⌥0 has to be considerably larger than the23

width of one side of the 95% confidence interval so that it can reliably be detected by a24

binomial test with ⌃ ⇥ .05 (keep in mind that, even when the di�erence between ⌥ and ⌥025

is larger than this width, because of sampling variation, ⌥̂ and ⌥0 might be considerably26

closer, leading to failure to reject ⌥0). The term e�ect size is sometimes used as a generic27

way to refer to the di�erence between null hypothesis and true proportion. The reliability28

of rejection given a certain e�ect and sample size is called the power of the hypothesis29

test (see DeGroot/Schervish 2002, Chapter 8). In our example, the arithmetic di�erence30

⌥ ⇥ ⌥0 is a sensible way of quantifying e�ect size, but many other measures exist and may31

be more suitable in certain situations (we will return to this issue during the discussion of32

two-sample tests in Section 5).33

In corpus analysis, we often deal with very large samples, for which confidence inter-34

vals will be extremely narrow, so that a very small e�ect size may lead to highly significant35

rejection of H0. Consider the following example: Baayen (2001, p. 163) claims that the36

definite article the accounts for approx. 6% of all words in (British) English, including37

punctuation and numbers. Verifying this claim on the LOB (the British equivalent of the38

Brown corpus, see Appendix), we find highly significant evidence against H0. In particu-39

lar, there are f ⇥ 68,184 instances of the in a sample of n ⇥ 1,149,864 words. A two-sided40
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Confidence intervals in R

◆ Most hypothesis tests in R also compute a 
confidence interval (including binom.test()) 
• omit H0 if only interested in confidence interval 

◆ Significance level of underlying hypothesis test 
is controlled by conf.level parameter 
• expressed as confidence, e.g. conf.level=.95 for 

significance level α = .05, i.e. 95% confidence 

◆ Can also compute one-sided confidence interval 
• controlled by alternative parameter 

• two-sided confidence intervals strongly recommended
!42



Confidence intervals in R

> binom.test(190, 1000, conf.level=.99) 

 Exact binomial test 

data:  190 and 1000  

number of successes = 190, number of  
trials = 1000, p-value < 2.2e-16 

alternative hypothesis: true probability of 
success is not equal to 0.5  

99 percent confidence interval:  
 0.1590920 0.2239133   

sample estimates:  
probability of success  
                  0.19

!43



Choosing sample size 
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Using R to choose sample size

!46

◆ Call binom.test() with hypothetical values 

◆ Plots on previous slides also created with R 
• requires calculation of large number of 

hypothetical confidence intervals 

• binom.test() is both inconvenient and inefficient 

◆ The corpora package has a vectorised function 
 > library(corpora) 

 > prop.cint(190, 1000, conf.level=.99) 

 > ?prop.cint # “conf. intervals for proportions”



Frequency comparison

◆ Many linguistic research questions can be 
operationalised as a frequency comparison 
• Are split infinitives more frequent in AmE than BrE? 

• Are there more definite articles in texts written by 
Chinese learners of English than native speakers? 

• Does meow occur more often in the vicinity of cat  
than elsewhere in the text? 

• Do speakers prefer I couldn’t agree more over 
alternative realisations such as I agree completely? 

◆ Compare observed frequencies in two samples
!47



Frequency comparison

◆ Null hypothesis for frequency comparison 

• no assumptions about the precise value π1 = π2 = π 

◆ Observed data 
• target count ki and sample size ni for each sample i 

• e.g. k1 = 19 / n1 = 100 passives vs. k2 = 25 / n2 = 200 

◆ Effect size: difference of proportions 
• effect size  δ = π1 – π2   (and thus H0: δ  = 0)

!48

H0 : ⇡1 = ⇡2



Frequency comparison in R

◆ Frequency comparison test:  prop.test() 
• observed data: counts ki and sample sizes ni 

• also computes confidence interval for effect size 

◆ E.g. for 19 passives out of 100 / 25 out of 200 
• parameters conf.level and alternative  

can be used in the familiar way  

 > prop.test(c(19,25), c(100,200))

!49



Frequency comparison in R

> prop.test(c(19,25), c(100,200)) 

 2-sample test for equality of proportions with 
continuity correction 

data:  c(19, 25) out of c(100, 200)  

X-squared = 1.7611, df = 1, p-value = 0.1845 

alternative hypothesis: two.sided  

95 percent confidence interval:  
 -0.03201426  0.16201426  

sample estimates:  
prop 1 prop 2  
 0.190  0.125

!50



Contingency tables

◆ Data can also be given as a contingency table 
• e.g. k1 = 19 / n1 = 100 passives vs. k2 = 25 / n2 = 200 

• represents a cross-classification of n = 300 items 

• generalization to larger n × m tables possible
!51

k1 k2

n1–k1 n2–k2

n1 n2

19 25

81 175

100 200

sample 1 sample 2

passive

active



Tests for contingency tables

◆ Fisher’s exact test = generalization of 
binomial test to contingency tables 
• computationally expensive, mostly for small samples 

◆ Pearson’s chi-squared test = asymptotic test 
based on test statistic X2 
• larger value of X2 ➞ less likely under H0 
• X2 can be translated into corresponding p-value 
• suitable for large samples and small balanced samples 

◆ Likelihood-ratio test based on statistic G2 
• popular in collocation and keyword identification 
• suitable for highly skewed data

!52



Tests for contingency tables

◆ Can easily carry out chi-squared (chisq.test) 
and Fisher’s exact test (fisher.test) in R 
• likelihood ratio test not included in R standard library 

◆ Table for 19 / 100 vs. 25 / 200 
 > ct <- cbind(c(19,81),  
              c(25,175)) 

 > chisq.test(ct) 

 > fisher.test(ct)

!53

19 25

81 175



Keyword analysis

◆ KWs are significantly more 
frequent in target corpus  
than in reference corpus 
• carry out frequency comparison 

for each candidate word 
• multiple comparsions! (➞ Unit 3) 

◆ Symmetric KW e.g. 
• target = newspaper 1 
• reference = newspaper 2 

◆ Asymmetric KW e.g. 
• target = texts on specific topic 
• reference = general language 

corpus such as BNC
!54

k1 k2

n1–k1 n2–k2

n1 n2

target reference

“power”

other 
words

n1 =  size of target corpus  
 (number of tokens) 
n2 = size of reference 
  
ki = frequency of KW 
 cand. in each corpus



Collocations analysis

◆ Collocations are words that 
tend to co-occur with a given 
node word (➞ Unit 4) 
• indicate meaning and 

connotations of the node 
• lexicalized multiword expressions 

◆ Frequency comparison for each 
node and candidate collocate 
• most results will be significant 
• test statistic used as “salience”  

◆ Operationalized as contingency 
table of all tokens in base corpus 
• “near node” vs. “not near node”

!55

k1 k2

n1–k1 n2–k2

n1 n2

NEAR  
“power”

¬ NEAR  
“power”

“test”

other 
words

n1 =  no. of tokens that   
 co-occur with node 
n2 = no. of tokens that 
 do not co-occur 
f1 = frequency of cand. 
 collocate in corpus

f1



Significance vs. relevance

◆ Much focus on significant p-value, but … 
• large differences may be non-significant if sample size 

is too small (e.g. 10/80 = 12.5% vs. 20/80 = 25%) 

• increase sample size for more powerful/sensitive test 

• very large samples lead to highly significant p-values 
for minimal and irrelevant differences (e.g. 1M tokens 
with 150,000 = 15% vs. 151,000 = 15.1% occurrences) 

◆ It is important to assess both significance and 
relevance (= effect size) of frequency data! 
• confidence intervals combine both aspects

!56



Effect size in contingency tables

◆ Simple effect size measure: 
difference of proportions 

◆ H0:  δ = 0 

◆ Issues 
• depends on scale of π1 and π2 

• small effects for lexical freq’s
!57

� = ⇡1 � ⇡2

π1 π2

1–π1 1–π2

population equivalent of a 
contingency table, which 
determines the multinomial 
sampling distribution

⇡̂1 =
k1

n1

⇡̂2 =
k2

n2



Effect size in contingency tables

◆ Effect size measure: 
(log) relative risk 

◆ H0:  r = 1 

◆ Issues 
• can be inflated for small π2 

• mathematically inconvenient
!58

r =
⇡1

⇡2

π1 π2

1–π1 1–π2

population equivalent of a 
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sampling distribution

⇡̂1 =
k1
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⇡̂2 =
k2
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Effect size in contingency tables

◆ Effect size measure: 
(log) odds ratio 

◆ H0:  θ = 1 

◆ Issues 
• can be inflated for small π2 

• interpretation not very intuitive
!59

✓ =
⇡1

1�⇡1
⇡2

1�⇡2

=
⇡1(1 � ⇡2)
⇡2(1 � ⇡1)

π1 π2

1–π1 1–π2

population equivalent of a 
contingency table, which 
determines the multinomial 
sampling distribution

⇡̂1 =
k1

n1

⇡̂2 =
k2

n2



Effect size in contingency tables

◆ Effect size measure: 
φ coefficient / Cramér V 

◆ H0:  ??? 

◆ Issues 
• this is a property of the sample 

rather than the population!
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� =

r
X2

n

π1 π2

1–π1 1–π2

population equivalent of a 
contingency table, which 
determines the multinomial 
sampling distribution

⇡̂1 =
k1

n1

⇡̂2 =
k2

n2

n = n1 + n2



Effect size in contingency tables

◆ Effect size measure: 
φ coefficient / Cramér V 

◆ H0:  φ = 0  

◆ Issues 
• depends on relative sample sizes 

• interpretation entirely unclear
!61

n = n1 + n2

r1 = n1/n

r2 = n2/n

π1 π2

1–π1 1–π2

population equivalent of a 
contingency table, which 
determines the multinomial 
sampling distribution

⇡̂1 =
k1

n1

⇡̂2 =
k2

n2

� =
⇡1(1 � ⇡2) � ⇡2(1 � ⇡1)p

(r1⇡1 + r2⇡2)(1 � r1⇡1 � r2⇡2)/r1r2



Effect size in contingency tables

◆ We can estimate effect sizes by 
inserting sample values ki/ni 

◆ But such point estimates are 
meaningless! 

◆ Confidence intervals available 
only for some effect measures 
• approximate interval for δ from 

proportions test 
• exact interval for odds ratio θ 

from Fisher’s test 
• φ computed from chi-square 

statistic is still a point estimate!
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Visualizing effect size measures
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Visualizing effect size measures
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Visualizing effect size measures
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(log) odds ratio
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Visualizing effect size measures
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Visualizing effect size measures
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φ coefficient (10 : 1)
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Visualizing effect size measures
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φ coefficient (1 : 10)
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◆ As a case study, we will carry out frequency 
comparisons of various linguistic features in 
subsets of the British National Corpus (BNC) 

◆ The example is provided as an interactive 
RMarkdown notebook bnc_frequency.Rmd 

• uses data sets included in corpora package 

• additional data files bnc_queries.tbl  and  
bnc_metadata_utf8.tbl show how to read 
frequency data into R

A case study:  
BNC frequency comparisons

!69


